41 research outputs found

    A cluster-based decentralized job dispatching for the large-scale cloud.

    Get PDF
    The remarkable development of cloud computing in the past few years, and its proven ability to handle web hosting workloads, is prompting researchers to investigate whether clouds are suitable to run large-scale computations. Cloud load balancing is one of the solution to provide reliable and scalable cloud services. Especially, load balancing for the multimedia streaming requires dynamic and real-time load balancing strategies. With this context, this paper aims to propose an Inter Cloud Manager (ICM) job dispatching algorithm for the large-scale cloud environment. ICM mainly performs two tasks: clustering (neighboring) and decision-making. For clustering, ICM uses Hello packets that observe and collect data from its neighbor nodes, and decision-making is based on both the measured execution time and network delay in forwarding the jobs and receiving the result of the execution. We then run experiments on a large-scale laboratory test-bed to evaluate the performance of ICM, and compare it with well-known decentralized algorithms such as Ant Colony, Workload and Client Aware Policy (WCAP), and the Honey-Bee Foraging Algorithm (HFA). Measurements focus in particular on the observed total average response time including network delay in congested environments. The experimental results show that for most cases, ICM is better at avoiding system saturation under the heavy load.N/

    An energy efficient routing scheme by using GPS information for wireless sensor networks

    Get PDF
    In the process of transmission in wireless sensor networks (WSN), a vital problem is that a centre region close to the sink will form in which sensors have to cost vast amount of energy. To communicate in an energy-efficient manner, compressed sensing (CS) has been employed gradually. However, the performance of plain CS is significantly dependant on the specific data gathering strategy in practice. In this paper, we propose an energy-efficient data gathering scheme based on regionalisation CS. Subsequently, advanced methods for practical applications are considered. Experiments reveal that our scheme outperforms distributed CS, the straight forward and the mixed schemes by comparing different parameters of the data package, and the considered methods also guarantee its feasibility.N/

    Distributed degree-based link scheduling for collision avoidance in wireless sensor networks.

    Get PDF
    Wireless sensor networks (WSNs) consist of multiple sensor nodes, which communicate with each other under the constrained energy resources. Retransmissions caused by collision and interference during the communication among sensor nodes increase overall network delay. Since the network delay increases as the node's waiting time increases, the network performance is reduced. Thus, the link scheduling scheme is needed to communicate without collision and interference. In the distributed WSNs environment, a sensor node has limited information about its neighboring nodes. Therefore, a comprehensive link scheduling scheme is required for distributed WSNs. Many schemes in the literature prevent collision and interference through time division multiple access (TDMA) protocol. However, considering the collision and interference in TDMA-based schedule increases the delay time and decreases the communication efficiency. This paper proposes the distributed degree-based link scheduling (DDLS) scheme, based on the TDMA. The DDLS scheme achieves the link scheduling more efficiently than the existing schemes and has the low delay and the duty cycle in the distributed environment. Communication between sensor nodes in the proposed DDLS schemes is based on collision avoidance maximal independent link set, which enables to assign collision-free timeslots to sensor nodes, and meanwhile decreases the number of timeslots needed and has low delay time and the duty cycle. Simulation results show that the proposed DDLS scheme reduces the scheduling length by average 81%, the transmission delay by 82%, and duty cycle by over 85% in comparison with distributed collision-free low-latency scheduling scheme.N/

    Developing route optimization-based PMIPv6 testbed for reliable packet transmission.

    Get PDF
    Proxy Mobile IPv6 (PMIPv6) allows a mobile node to communicate directly to its peers while changing the currently used IP address. This mode of operation is called route optimization (RO). In the RO process, the peer node learns a binding between the home address and its current temporary care-of-address. Many schemes have been proposed to support RO in PMIPv6. However, these schemes do not consider the out-of-sequence problem, which may happen between the existing path and the newly established RO path. In this paper, we propose a scheme to solve the out-of-sequence problem with low cost. In our scheme, we use the additional packet sequence number and the time information when the problem occurs. We then run experiments on a reliable packet transmission (RPT) laboratory testbed to evaluate the performance of the proposed scheme, and compare it with the well-known RO-supported PMIPv6 and the out-of-sequence time period scheme. The experimental results show that for most of the cases, our proposed scheme guarantees RPT by preventing the out-of-sequence problem.N/

    Noise-aware Learning from Web-crawled Image-Text Data for Image Captioning

    Full text link
    Image captioning is one of the straightforward tasks that can take advantage of large-scale web-crawled data which provides rich knowledge about the visual world for a captioning model. However, since web-crawled data contains image-text pairs that are aligned at different levels, the inherent noises (e.g., misaligned pairs) make it difficult to learn a precise captioning model. While the filtering strategy can effectively remove noisy data, however, it leads to a decrease in learnable knowledge and sometimes brings about a new problem of data deficiency. To take the best of both worlds, we propose a noise-aware learning framework, which learns rich knowledge from the whole web-crawled data while being less affected by the noises. This is achieved by the proposed quality controllable model, which is learned using alignment levels of the image-text pairs as an additional control signal during training. The alignment-conditioned training allows the model to generate high-quality captions of well-aligned by simply setting the control signal to desired alignment level at inference time. Through in-depth analysis, we show that our controllable captioning model is effective in handling noise. In addition, with two tasks of zero-shot captioning and text-to-image retrieval using generated captions (i.e., self-retrieval), we also demonstrate our model can produce high-quality captions in terms of descriptiveness and distinctiveness. Code is available at \url{https://github.com/kakaobrain/noc}

    Channel and timeslot co-scheduling with minimal channel switching for data aggregation in MWSNs.

    Get PDF
    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.N/

    DETN: Delay-Efficient Tolerant Network for Internet of Planet

    Get PDF
    The explosion of the internet has resulted in various emerging technologies, as for example the Internet of Things (IoT). IoT is an intelligent technology and service connecting objects in the Internet. IoT facilitates the exchange of information between people and devices that communicate with each other. Beyond IoT, we are now studying a new paradigm called Internet of Planets (IoP), in which planets in a solar system communicate with each other using the Internet. This paper presents our research in the internet communications between planets, detailing benefits, limitations and directions for future work. We propose a time (delay) information-based Delay Efficient Tolerant Networking (DETN) routing scheme for efficient data transmission among mobile nodes. The results of the proposed DTN routing algorithm using NS-3 simulation tools indicate satisfactory levels of routing performance in comparison with existing DTN algorithms

    A distributed delay-efficient data aggregation scheduling for duty-cycled WSNs

    Get PDF
    With the growing interest in wireless sensor networks (WSNs), minimizing network delay and maximizing sensor (node) lifetime are important challenges. Since the sensor battery is one of the most precious resources in a WSN, efficient utilization of the energy to prolong the network lifetime has been the focus of much of the research on WSNs. For that reason, many previous research efforts have tried to achieve tradeoffs in terms of network delay and energy cost for such data aggregation tasks. Recently, duty-cycling technique, i.e., periodically switching ON and OFF communication and sensing capabilities, has been considered to significantly reduce the active time of sensor nodes and thus extend network lifetime. However, this technique causes challenges for data aggregation. In this paper, we present a distributed approach, named distributed delay efficient data aggregation scheduling (DEDAS-D) to solve the aggregation-scheduling problem in duty-cycled WSNs. The analysis indicates that our solution is a better approach to solve this problem. We conduct extensive simulations to corroborate our analysis and show that DEDAS-D outperforms other distributed schemes and achieves an asymptotic performance compared with centralized scheme in terms of data aggregation delay.N/

    Trail-using ant behavior based energy-efficient routing protocol in wireless sensor networks.

    Get PDF
    Swarm Intelligence (SI) observes the collective behavior of social insects and other animal societies. Ant Colony Optimization (ACO) algorithm is one of the popular algorithms in SI. In the last decade, several routing protocols based on ACO algorithm have been developed for Wireless Sensor Networks (WSNs). Such routing protocols are very flexible in distributed system but generate a lot of additional traffic and thus increase communication overhead. This paper proposes a new routing protocol reducing the overhead to provide energy efficiency. The proposed protocol adopts not only the foraging behavior of ant colony but also the trail-using behavior which has never been adopted in routing. By employing the behaviors, the protocol establishes and manages the routing trails energy efficiently in the whole network. Simulation results show that the proposed protocol has low communication overhead and reduces up to 55% energy consumption compared to the existing ACO algorithm.N/
    corecore